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Abstract

This report deals with the radiation from arbitrary source

distributions in plane stratified, anisotropic media. The formal solutions

are obtained by an extension of modal procedures familiar from the analysis

of isotropic waveguide regions. Special attention is given to the formulation

of a radiation condition which requires the flow of energy away from the

sources, and to its interpretation utilizing the refractive index surfaces

descriptive of plane wave propagation in an anisotropic medium. These con-

cepts are illustrated in detail for an ionized plasma under the influence of an

external steady magnetic field.
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I. Introduction

The propagation of plane electromagnetic waves in regions with

anisotropic permittivity or permeability has received considerable atten-

tion in the literature - the former in connection with the study of the
1

optical properties of crystals and the electromagnetic behavior of the

ionosphere 2 , 3, and the latter in connection with magnetized ferrites 4

In these applications, the sources of the field have been of minor concern,

and emphasis has been placed on the determination of the wave spectrum

in the region. However, some recent problems - for example, the in-

vestigation. of discontinuities in ferrite or plasma loaded waveguides,

Cerenkov effects due to moving charged particles in a magneto-ionic

medium5 , or radio communication from satellites passing through the

ionosphere - require a knowledge of the radiation characteristics of

localized sources.

This report deals with the radiation from arbitrary time harmonic

source distributions (varying like exp(jwt) ) in a transversely unbounded

region filled with a dielectric medium characterized by a tensor permittivity

E as shown in (1). The permeability ;AL is assumed to be constant. E may

be a piecewise constant function of the longitudinal variable z, thereby ad-

mitting linear stratification. By an extension of the modal procedure described

for isotropic regions by Marcuvitz and Schwinger, the transverse (to z)

electromagnetic fields Et (x, y, z) and H t(x, y, z) are represented as a super-

position of orthogonal transverse vector mode fields having the form Vi(z)7i (x, y)

and Ii (z) Ni (x,y), respectively; each mode is a solution of the source-free

Maxwell field equations. Because of the infinite extent of the cross-sectional

(x - y) domain and the non-variability of £ with x and y, the transverse vector

mode functions and h. have an exponential dependence of the form exp(jx+j Tj y),

where the modal index i-( , i1) is continuously variable. As regards their
vectorial characteristics, the modes are found to separate into two sets, "ordinary*
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and 'extraordinary* (see Appendix A), in terms of which the electromagnetic

fields can be represented as in (7a, b). The modal amplitudes V and I are

found to satisfy the first-order differential equations (8) (transmission line

equations), thereby permitting the use of network methods in their determina-

tion. The continuity requirements of the tangential electric and magnetic

fields across an interface between two different anisotropic regions, or the

imposition of boundary conditions at a terminal surface of the region, give
rise to coupling between the ordinary and extraordinary modal amplitudes.

Their systematic calculation via equivalent network procedures is emphasized

in Sec. II.

The transmission line equations (8) descriptive of the spatial behavior
of V and I in each layer contain as parameters the propagation constant a and
the characteristic impedance Z. As shown in Appendix A, ) in an anisotropic

medium is generally a complicated multivalued function of the transverse wave-

numbers (6, n ). Its proper definition on the integration path, essential for a
unique specification of the fields via the modal representations (7a, b), is ac-

complished by recourse to a radiation condition which requires that the energy
flow due to a localized source distribution is outward from the source region.7

The associated restrictions on X, complicated by the fact that the directions
of energy and phase propagation generally differ in an anisotropic medium, are
discussed in Sec. III - - both analytically, and through use of the refractive

index surfaces for the medium which specify the variation in refractive index

as a function of the direction of propagation of a plane wave. Special attention
is given to the case of a plasma under the influence of a longitudinal d. c.
magnetic field, and to the effect of the plasma parameters in determining the
propagation characteristics of electromagnetic waves. The definition of the

multivalued function 3( for various plasma parameters is examined in detail

in Sec. 1V, thereby rendering unique the formal solution of this class of

radiation problems.

The results of this analysis have been applied elsewhere 8' 9 to the
detailed study of the radiation field of an electric current element in an infinite,

and semi-infinite, homogeneous, anisotropic plasma medium.

Investigations by other authors have been concerned primarily with
the study of radiation from infinite, semi-infinite, and single-slab anisotropic

plasma regions. For orientations of the gyrotropic axis perpendicular to the
interface, the formal solutions for these. configurations emerge as special cases

of our analysis. While the imposition of a radiation condition is essential in the
formulation of radiation problems in infinite and semi-infinite regions, the de-
tailed discussion of its effect on the proper specification of the representation
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integrals as carried out herein has generally been omitted by other authors. With

reference to the infinite medium problem we cite the work of Abraham 0 , Bunkin I1 ,

Kogelnik 12 , Kueh 13, Mittra 14 , Mittra and Deschamps i, Clemmow 1 6 Motz and

Kogelnik 17 , Chow 18 . Abraham* has employed a two-dimensional Fourier integral

representation for the fields similar to that presented here, and has also pointed

out the utility of the refractive index surfaces in dealing with the radiation condition;

his analysis in connection with the latter does noti however, enter into the function-
theoretic questions treated in Secs. III and IV. The approach of the other authors

(except Clemmow) differs in that they proceed via a three-dimensional Fourier

integral formulation which, though imbued with a certain formal elegance for the

infinite medium problem, appears less convenient for an asymptotic analysis of

the radiation field, and also seems not directly suited to the study of stratified

media. Radiation from dipole sources in the presence of an anisotropic plasma19 8
half-space has been analyzed by Barsukov , Arbel , and Tyras, Ishimaru, and
Swarm 2 0 . Hodara 2 1 has recently been concerned with the problem of radiation

through an anisotropic plasma slab; he employs a two-dimensional Fourier trans-
form procedure but omits any function-theoretic discussion of the type mentioned

above. It also seems that the matching of the boundary conditions at the slab inter-

face and at the source could be more easily achieved by the network procedure
22described here, as may be seen from the analysis of Wu who has used the network

approach for the slab problem. Several studies of the simpler problems of radiation

by specially oriented line sources in a gyrotropic medium2 3 ' , or of radiation in

a plasma subjected to weak (wc 0 in (35)) or strol 2  29(Wc.4 00)external

magnetic field have likewise been carried out.

Green's function representations for general anisotropic waveguides
have been obtained by Bresler and Marcuvitz 3 0 via abstract operator methods. For
the special class of problems herein, our procedure, though less general, yields

the result more directly and by conventional methods.

The authors are indebted to G. Meltz of the Air Force Cambridge Research

Laboratories for calling this reference to their attention during the preparation

of this manuscript.
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II. Formal Solution

a, Reduction of the field equations

Consider an arbitrary (but prescribed) distribution of time-harmonic

sources of electric current S(r) and magnetic current M(r) in a medium com-

prising a series of transversely unbounded, parallel anisotropic layers (Fig. 1).
A coordinate system is chosen so that the z-axis is perpendicular to the layer

(See Fig. 1 in Appendix C)

interfaces, and each layer is assumed to be characterized by a scalar

permeability po and a tensor dielectric constant

i t -0- 0 Z A~

db~~~t1)L (() (E)) ()
= z 'z,(1

where (a) denotes the a-th layer, 't is a transverse (to z) dyadic whose

representative in an x-y coordinate system is as shown, and z is a unit
vector along the z-direction. These dielectric tensors have the form appropriate
to an ionized plasma medium under the influence of a d.c. magnetic field along
the z-axis. We seek a solution of the steady-state Maxwell field equations

xE() = -jo H(a ) -
(C)  V x H ( L) =. A() .( j ()

- 0-

in each layer, subject to the required continuity of the transverse electromagnetic

field and H ) at each interface, to prescribed boundary conditions at the
z-termini of the region (if any), and to a radiation condition at infinity. A time
variation exp(jwot) is understood throughout.
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If the configuration in Fig. 1 is viewed as a waveguide with axis

along z, the formal solution of the boundary value problem in (2) can be

effected by an application of guided wave techniques developed for isotropic

and anisotropic regions.6,30, 31 First, by taking the scalar and vector products of

Eqs. (Z) and the longitudinal unit vector z 0 , one derives after some rearrange-
ment the equations for the transverse field components (note: z x 1 t = - z x

-0 - 't t* -ox

8aE V V 1A
;-t t tO" = Jtt° [it + iHt_  x z °0 + ICt x z 0 (3a)

8H t  VtV t

- = jW t +  k0-o x E t + z 0 it * (3b)

from which the longitudinal components can be obtained via the relation,

E - ( , H = -a-o-- " xEt) MzEz jt W t H I t x z ° ) - .jWPo
(3c)

To simplify the notation, the superscripts a) identifying the various layers

have been omitted, and the following definitions have been introduced:

£= 1zt_\), - :Et k2 :kc kz = I.
-t E 1 Z) 2 =2 2 2

t, o(3d)
where E° is the dielectric constant for free space, E is the normalized

longitudinal dielectric constant E^Z/Eo I and c , Z = tl Z/c are normalized to

C.* Vt = (V - z a/az) represents the transverse gradient operator, 1 t the

transverse unit dyadic, and

ititz0 V t MZ 1 V t z(3e)
= t jtoP, - o t jt, -= t + -- C-- 0 -- ,

are equivalent transverse electric and magnetic source current distributions.

Next, we seek a representation of the transverse field components in

terms of a set of transverse vector eigenfunctions which are complete, orthogonal,

and individually satisfy the homogeneous field equations and the required boundary

conditions, in the transverse domain. As shown in Appendix A, the electric mode

* For the plasma case, normalization to c implies that E = It in the absence
-t

of an external d. c. magnetic field (see Sec. IV).
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functions e and the magnetic mode functions R comprise a continuous dis-

tribution of plane waves whose vectorial characteristics can be grouped into

two categories, 'ordinary" and "extraordinary, to be denoted by the subscripts

o and e, respectively:

1- 15 o,e (tT) 7 -00 <(4#,q)<O * (4a)

ke jk(t x + qy)
i e(x,y;t,,q) = h ( ,') e (4b)-o,e -o, e

where

-,A -- + _.+42 (Cx) , - = X +yo , (4c)

h 1 c ( ) 2 2 (4d)

and

6 = C = (74 +462(1-a2) sgn(.i 1). (4e)

While the eigenvalue problem could have been treated for general dissipative
30,w22media, the above analysis has been restricted to the lossless case for which

C, C and t are real. It is noted that the wavenumbers t and q have been

normalized to k, thereby implying that c > 0 and k> 0. The modifications

introduced when t < 0 are discussed at the end of Appendix A. The orthogonality

'properties of the position vectors e and h differ according to whether A-Ope -o, e

is real or imaginary (the square root in (4e) is defined to be positive when real

and negative imaginary otherwise):

e h h o 1 eh xz = , A real

(5)
e h xz o 0, e h x z 1 , A imaginary,
-0 -0 - o -8 -o

where the asterisk denotes the complex conjugate. Thus, the mode functions

in (4a, b) satisfy the bi-orthconji]itv relation,
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go 00o

fdx fdy "e(x, y; ,q)T(x,y; ,n ) x z 0 e ,h x z 5( - ')5( - ') (6)
-.0 -00

which, upon insertion of the appropriate modal subscripts o or e, is simplified

further from (5).

The various vector functions in (3a, b) can now be represented as

follows:
=co co r

Et(x,y,z) =k fdgfd 1 qo Vo(z; v) e (9,T) + Ve (z;., 1)e e(9y) e-jkl9x+tYI)
77 - 0 J (7a)

H k f dgfd 1  , I() + I(z; , ,)he( ,') e-Jk(gx+ 1y)
t(xY Z) L 0 (7b)

A CO c [ (z;
.E h('., Y ) N I f e~ , e~h(t, q) + i(z; 9 '1)h~ 0~ ej( +,y

-00 -0 (7c)

A k 0000L )yMt(x, y. z) X 2 ° 0 T- f dVd vez;g,TI)ee(t S TO + v (z~g, ?I)eo(g. - e-j l x q )

-- _id ec -e 0 -0Td

The completeness and existence of these representations (for spatially confined

source distributions) in the (x-y) function space follows from the theory of the

Fourier integral and from the field behavior at infinity, while that in the ZxZ
vector space is assured by the linear combination of the e- and o- eigenvectors.

Upon substituting Eqs. (7a-d) into (3a, b), interchanging the orders of

differentiation and integration and noting that the operator V t can then be

replaced by -jk a, one may equate the resulting Fourier transforms on both

sides of these equations. Dot product multiplication of the first and second

of these equations with (h o z _) and (z x e. ), respectively, and use of

Eqs. (A4 ) in Appendix A and of the orthogonality relations (5) then yields the
following expressions to be satisfied by the transforms V and I o

O, e o,,e

dV d I-dV--= jkX'Zl+v , " dz = k2YV+ . (8)

These equations, valid separately for both the o- and e- modes (for real or

imaginary A), can evidently be interpreted as transmission line equations,

with V, I, If, Z, and Y playing the role of voltage, currenj normalized

propagation constant, characteristic impedance and characteristic admittance,
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respectively, while v and i represent voltage and current generator

distributions (Fig. (b)). ^0 and Z = I/Y are determined from the eigenvalue

problem in Appendix A as

-~ 2.
' ~ u+ W , Y - 46zj= , (8a)

V~AZ I±cA)e -

where
2 2

Cl + 1 2 z z I -C
U - = (1 G - 2 2 1 2 * (8b)

1 
1

U2 
- W can alternatively be written as (C1 1)(A/Z). The voltage and

current generator strengths are evaluated by inverting Eqs. (7c, d) via (6):
00 00 00 0oIf A

1 0 = fJdxJ dy e it , v= fdx dy _ t A real; (9)
e -00 -0o e e -0 -oo e

For imaginary A, e and h are replaced by and respectively.-0, e -o, e -e, o -e, o
From the two-dimensional divergence theorem

00 00 00 00

fdxfdy AVt f - fdxfdy f "A + P ds f A n
-CO -00 -00 -00 S

where A and f are suitably continuous vector and scalar functions, s denotes a
contour bounding the transverse cross-section at infinity in the x-y plane and n

is a unit vector normal to s, one observes that if f = 0 on s, the double integral

on the left-hand side is equal to the double integral on the right-hand side. Upon

applying this result to Eq. (9) (after substituting (3e) and assuming that J and MS Z
are spatially confined sources), one obtains alternatively,

01) 00 00 0

dxdy M e 0 . x z dxdy , (9a)0 f -it --so Wp, f z-e 00) _00 e 00-0e

= fM" k f fj ]y J x z * a dxdy (9b)0 f f t  WE f fxdy- z-? -o -e -0 -0 (D 00 -00

which result can now be applied also to discontinuous current distributions.

The proper definition of the multivalued function'y(), and the dis-
position of the integration path in (7a, b) in relation to its singularities, will

SOne observes from Eqs. (4c, d) that the analytic continuation of the functions
e* and h* from the domain of real A into the domain of imaginary A yields the

o, e -0, e
functions e* and h* , respectively, evaluated for imaginary A. Thus, it suf-
fices to evalhte theniscontinuously represented inner products in (9) for real A
and continue these functions into the imaginary-A domain. The same is true for
other inner products encountered later on.
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be discussed further in Sec. III. For the present we note only thatoo nd

aeare associated, respectively, with the + and - signs in (8a), and that 4U2 -W

is defined to be positive when real. When )has an imaginary part, the

associated wave is non-propagating (along z), while )( real represents a

propagating wave. Since i and v are specified in terms of known quantities,

the solution of the Maxwell field equations (2) has been reduced to the solution

of the transmission line equations (8) in each layer, subject to the required

continuity conditions at each interface and to the specified boundary conditions

at the z-termini of the region.

b. Solution of the modal network problem

At an interface between two different anisotropic regions, the re-

quired continuity of E and H in (7a, b) can be achieved by assuring the

continuity of their Fourier transforms. If parameters pertaining to the two

regions are distinguished by superscripts a and P, respectively, the boundary

conditions are satisfied if

k( P)  ) h() + I ( e) h = k(G) [(P) h ( p) + I( P) h( p)  (lOb)

kLI_-0 e -e = h 0 I he -l

provided that the normalized transverse wave numbers in the two regions are

related via

k ( (')  = k ( P) t(P) , k ( a ) T1( )  Z_ k(P)() . (10c)

In view of the orthogonality relation (5), Eqs. (10a, b) can be reduced to the

matrix form:

L = T T.) t tap (11)

where V and-I are the column vectors

V ( i ) | i)..

!~G e CiL) , , P (Ila)1 G)
ee

while Tz is the impedance transfer matrix. The matrix elements t ,

i, j = a, P, are themselves ZxZ matrices whose elements are given by:

* It is implied that e, r1 in the integral representations (7a, b) are replaced

throughout by the appropriate t (i), 1 (i), = a, P, whence V ( a ) = V (z; t(0), 71(C),
) o, e o,e

o, e = V., e(z (,n(p)), etc. This is to be borne in mind when interpreting
formulas involving parameters with different superscripts.
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t QP =t =0 , (lib)

L) ~ x z e h (()* x z e-o -o -o -o -o -e
k(a) (lic)

S (c)*X x eM h(6)* x z e()
'e -o -O -e -o -e

e(a)*• h( ) x z e () x z
k(a) 0 -0 --o 0- e --

t -- (11d)
e(a)* x z e(G)* h (P) x z

. -e 0- -0 -e -e -0o

Expressions (11c, d) apply for real or imaginary A (see footnote on p. 8). Since

the submatrices t Q and t are not diagonal, the ordinary and extraordinary

modes are coupled at the interface. Because t = t P = 0, the coupling occurs

in a particularly simple manner and can be schematized in terms of the trans-

former network shown in Fig. 2. It is also noted, in view of the symmetrical

character of Eqs. (10) as regards a and P, that the elements of the inverse

matrix T_ l are given as in (llc, d) provided that the superscripts a and P arez

interchanged throughout.

In the interior of each slab region, the equivalent modal network

comprises the two transmission lines representative of the o- and e-modes,

respectively, as shown in Fig. l(b). If the slab in question has a length d,

the impedance transfer matrix Iz for the slab region is obtained from simple

transmission line theory as follows:

It t ~
11 12 ,(2

ZL t z tzz

where the ZxZ submatrices tij, i, j = 1, 2, are diagonal and are given by
A

t = t2 2 = cos(kegd) , Ytz = Z tzl = j sin (k- d). (lZa)

Ab A

and Z are the diagonal propagation constant and characteristic impedance

matrices, respectively,

_z e = ; -l __ 0o . (1Zb)
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The matrices in (12a) are interpreted by recalling that if'X is a diagonal

matrix, with elements i a matrix f( ) is also diagonal and has as its

elements f ( The voltage and current vectors V (1) and at the slab

face z = 1 are then related to the analogous quantities at z' z2 via

T z [ 2 -Z 1 = d>O 112c)

Repeated application of Eqs. (11) and (12) allows one to express the voltages

and currents at any point za in the region in terms of the voltages and

currents at any other point zp. The overall transfer matrix descriptive

of the network between, z and z is then composed of the ordered product

of the transfer matrices of the network constituents in this region.

If the region is terminated at z = z in a plane surface on which

fEt and Ht are related by the boundary condition

f t (p z o ) = Z. - t (p,z o ) x z o (13)

where the transverse dyadic Z denotes a constant anisotropic surface im-

pedance whose representative in an x-y coordinate space is

z " (13a)zl zzz

then the corresponding relation between V and I at z 0 is given
o, e 0, e

via (7a, b) by

e +V e Z. (I h +I h )xz (14)0o-0 e-e - 0-o e-e- 0

Use of the orthogonality relations (5) allows one to deduce the terminal

impedance matrix Z for this structure as

z, (15a)

where for real or imaginary A (see footnote p. 8),

hxz Z-h x z h* x z *Zh x z I
- O -- O -o -o - e -o

[ (15b)x Z hx z h x z •Z.h xz
-o - -0 -o -e -o ~-~e -0o

* In this equation, the superscripts refer to quantities at different z - locations

in the same region.
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It in to be noted that even a scalar surface impedance Z s (for which Z = 1t Z6 , Z s =

constant) couples the o-and e-modes (see Eqs. (4c, d)). Only when Z= 0, 0

(short or open circuit) or when a = 0 (normally incident plane wave) does the

coupling disappear.

It is frequently more convenient to deal with a traveling wave representa-

tion involving incident and reflected waves rather than with the standing wave re-

presentation employed above. The required transformations, well-known in
3Z

linear network theory, are summarized below. Let

v + , 71 Y (-a-~ (16)

where the wave vectors I and S distinguish the amplitudes of waves traveling

to the right and left, respectively (see Fig. 3),

0 (16a)Lae be

e

and Y is the characteristic admittance matrix (see (12b)). Then the scattering

transfer matrix T provides the direct connection between the incident and

reflected wave amplitudes at terminals a and 0 as follows
C'S - =6 T o 'E T s " T .L. ir A ( 7I PC T PP

where the scattering transfer matrix T in related to the impedance transfer

matrix T z in (11) via the linear transformation

T ~ T'IL :(P (18)

1 denotes the Zx2 unit matrix. When applied to an interface between two

anisotropic media, t = t = 0 from (lib), and (18) yields the following

expressions for the ZxZ submatrices T..ij

T + Z t Y(j , (19a)

= 44t (a) )(19b7o1P t..- t~ = "lPC 1b
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AFor a slab of length d, the scattering transfer matrix T5 corresponding to

Tz in (12) has the simple diagonal representation

with N defined in (12b). Like the impedance transfer representation, the

scattering transfer formulation is well suited to the analysis of cascaded
networks as% encountered in stratified media.

If the sources are located in a semi-infinite medium, the reflection

phenomena are analyzed conveniently in terms of a scattering matrix representa-

tion which expresses the outgoing waves at terminals (a, ) in terms of the
incoming waves via the scatterintg Matrix ZF:

-(p)-( 51

Laa P s(P

The scattering matrix elements are related to those of the T matrix via

-1 -1 -1 -1a QQ = -T p'pp , sa up = p -,pp 'pC' . (22)

The above equations can also be used to describe an interface between

an anisotropic and an isotropic medium. In this instance, it is more convenient

to employ in the isotropic medium the linearly polarized E and H modes described

in Appendix A. *

(See Fig. 3 in Appendix C)

*Explicit expressions for the various coupling matrix elements, obtained

after carrying out the operations and substitutions in the text, are given in

reference 8. These rather cumbersome formulas are not listed here because

of space limitations.
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III. Radiation condition and specification of (

It was noted in connection with Eq. (8a) that Xo, e is a multivalued
function of (/2 = a; and that its analytic properties must be speci-

fied if the integral representations (7a, b) for the fields are to be rendered

unique. The definitions

Vu + ru.- VU+(c-l ) -6/2, (23a)

e -  V -  = u-(E--l)A2 (23b)

with U, W, and . specified in (8b) and (4e), respectively, imply that Xl' has
2 0

branch point singularities at U = W (A=0) and at those values of a for which
Xo = 0, while A e has branch point singularities at A = 0 and at those values

of a for which 2e = 0. Although the branch point at A = 0 occurs in both the

ordinary and extraordinary integrals in (7a, b) , the sum of the ordinary

and extrordinary integrands is an even function of A and therefore single-

valued at A = 0. This evenness, resulting from the fact that all ordinary

quantities differ from the corresponding extraordinary ones only by the

algebraic sign of A (see (4c,d), (8a, b) and (9)), implies that a series ex-

pansion of the combined integrand about A = 0 contains only even powers of

A, whence A = 0 is a regular point. Thus, no special care need be taken in

the definition of Ko, e at A = 0 as regards the total integrand; if the ordinary

and extraordinary integrals are treated separately, one may introduce con-
venient branch cut configurations relative to the branch points at A = 0 which

render the integrands single-valued on a Riemann surface associated with

this singularity.

In plane stratified media, V and I may also possess pole singularities
o, e oon the integration path. For the case of a single interface, these (surface

wave) poles have been discussed in reference 8.
**The two terms in the integrand of (7a) give rise to separate contributions

which will be called ordinary (subscript o) and extraordinary (subscript e),

respectively. Analogous considerations apply to (7b).
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For a region comprising a series of slabs of finite width along the

z-direction, the voltage and current solutions may be even functions of the

propagation constants X (M) in each slab. In this case, the points

where X(a= 0 and f( 0  are regular. The situation is different, how-0 e
ever, if one of the regions extends to z = £ 0o. In this instance, the integrands

are not even functions of the appropriate propagation constant, and the matter

of the definition of X o, e must be studied in detail. The investigation is di-

rectly connected with the specification of the boundary condition at I zl- +°

Consider a homogeneous anisotropic region which occupies the half

space zI < z < 0o, and assume that all sources are located in the space

z < z where z2 > zI. Then the solution of the transmission line equations (8)

at points z > z2 comprises traveling waves characterized by the functions.

exp (- j k WOe z), where k and oe have the values appropriate to the region

in question, and k is assumed to be positive. The integration in (7a, b) extends

over all real values of a (see Appendix B). One notes from (23a, b) that

and 9 may be either real, imaginary, or complex, depending on whether
2 e2

eis positive, negative, or complex (the latter case obtains when U < W,0o, e

i.e. , A is imaginary). For those values of a for which 2f or *e has a non-
0 e

vanishing imaginary part, the requirement

Im < 0 (24)

assures that the fields remain finite as z-4 00 and serves to define the multi-

valued functions Xo, e " The associated mode fields decay exponentially with

increasing z and represent a non-propagating wave.
If ao or K is real, the exp(-jk X z) solution represents a pro-

o0 ' 0, e
pagating plane wave. Since all sources are confined to the region z< z 2 , there

must be a net flow of power toward z = o0 and it appears plausible to suppose

that the power flow vector for each constituent propagating plane wave likewise

has a component along the +z direction. It will now be shown that the latter

condition follows from the former, i. e., that net total power flow toward z = ao

implies that each propagating plane wave carries power in this direction. This

radiation condition (see also reference 7) then permits the unique determination

of 9To over the range of a for which the propagation constants are real. It0,e

must be emphasized that the " energy radiation condition' is distinct from a

"phase radiation condition" since the directions of phase and energy propagation

in an anisotropic medium are generally different.
In view of the remarks at the end of Appendix A, the conclusions derived herein

can easily be adapted to imaginary k. In that case, exp(-Jk9z)-4exp(-Jjklgz),

etc.
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The requirement of net outward average power flow P through a
C

plane at z = c> , where c is a real constant, can be phrased as

00 00I. *
Pc = Re fdxf dyz.S(x, y, c)2!, S = E t x H t  (25)

-00 -00

where S is the complex Poynting vector. Upon substituting the integral

representations (7a, b) into (Z5), interchanging the orders of integration

and recalling the orthogonality relation (6), one obtains:

P Ref ff6 dq [V * + V*'ie + ffdg di1 [VI + Ve* 1 0 ,(26)

real corrplex

where the first integral extends over that portion of the - I plane for which
)2 is real (A real), while the second extends over the remaining region

o, e 2
wherein ,o, is complex (A imaginary). Since

o, e

Veo, e ( Z ) = Co, ee , 1o , (Z7a)

where C and C are constants, one notes from the transmission lineo e

equations (8) (or from the equivalent network picture in Fig. l(b) ), that

Io, e(Z) = Y o, e (z) , z> , (27b)

so that (26) can be written as:

Pc = Re { fdg d- IVI, + YeIVeIz  + ffdg dq [VV + Y YV* ?0.
r e a l  IYo 0 eecomplex o *8

From (Z3a, b),

2 *2 when A is imaginary, (29a)

so that o = + 3 " Since o and t e must both have negative imaginary
o -e 0 e

parts (from (Z4) ), it follows that

0 - e Im 8 e < 0 when A is imaginary, (29b)0 o~e
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whence, from (8a), Yo - Y . Hence, the integral over the range of
* 2 wihe

complex $( , which arises from a coupling of the ordinary and extra-

ordinary mode energies, is imaginary and does not contribute to Pc" If

-1(2 and (or) 12 is negative real, i.e., )( and (or) 'e is imaginary,

then Y and (or) Ye is also imaginary (see (8a) ) and the resulting integral

does not contribute to P . Hence, (28) can be simplified to:

PC ff Yov° 2 d dT) + ff YeIVeI 2 d dn >0, (30)

c 0 real e real

where the equality has been omitted since we are considering propagating

waves which carry energy along the + z - direction. The symbol "Re* is

superfluous because the integrals are now real. Since the radiation con-

dition (30) must be valid for arbitrary source distributions in the region

z < z2 , (i. e., for arbitrary V° and Ve ), each of the integrands must satisfy

the inequality whence P > 0 if, and only if,

Y > 0 when o is real. (31)
o, e Io, e

Hence, as stated above, each propagating plane wave must individually

satisfy the radiation condition.

(8a) can now be employed to determine the algebraic sign of

muot in (23a, b) when )o is real. Since the characteristic admittances0e,

must be positive, the sign of is identical with that of (A 2 + a 2A).

This condition evidently depends on the values of the constitutive para-

meters El P EV and is investigated below in detail for a plasma medium.

Eqs. (24) and (31) specify)o ' e uniquely for all real values of 6 and

(or a), and can be used to determine the analytic continuation of the

function 'o (a) around branch point singularities located on the real a
o, e

axis. Some general remarks can be made concerning the determination

of the range of propagating modes for which

2 2 u + =u -W (32)
e

is positive real. One evidently must have U2 - W > 0. If W > 0 for

some value of a, then < IUI and e< if U <0; thus,

both the ordinary and extraordinary modes propagate when U > 0, and

neither propagates when U< 0. If W< 0, then JU' - W > It; in this

instance, the ordinary mode propagates for U > 0 while the extraordinary
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mode does not. Thle points ' 3 , 4 at which U 2 - W =0, or A =0, are obtained

from (4e) as

3, 4 = 6 e / 7 . (33)

If 6 > 1, these points lie on the real a axis and give rise to (a- intervals
for which Vo, e is complex.

While the specification of the function o, (a), when real, can
o, e

be carried out analytically from a study of (31), there also exists a simple

graphical procedure utilizing the dispersion curves %(C) vs. a which locate

the real solutions of the dispersion relation in the V- a plane (see (A9) and (A15)).

For a plasma medium, under the influence of a steady external magnetic field,

these dispersion. curves fall into various separate categories (distinguished

by different ranges of the values of the applied signal, plasma, and cyclotron

frequencies) and have been investigated in great detail in connection with plane• 2 33 134
wave propagation in the ionospherb. prticular, it has been shown that a

plane wave characterized by the variation

e- jk x+i- y+ 2f(CT)z] = e- j k P "  , (34)

where p = 2E 0 + yo i + z 0 is the wave normal, carries real power in

a direction perpendicular to the dispersion curve at the point (6, t I, WQ,

and that the angle between the real part of the complex Poynting vector S

and the wave normal is less than 900. 10'3%he direction of energy flow is

commonly called the "ray' direction, and the above-mentioned relations

are schematized in Fig. 4 for a typical case for which the dispersion curve

has a closed and an open branch. The dispersion curves (or refractive

index curves ) can be shown to be rotationally symmetric about the d. c.

*Upon writing exp[-jkp._r_] = exp[ jpk.r] , where k is the wave-

number defined in (3d) and the vector k is parallel to p, one may interpret

p as the refractive index (with respect to a medium having a dielectric2 2 2
constant c = EoE 

) for the wave traveling in the direction k. Since p = + a

the distance from the origin to the R vs. a surface yields the magnitude of p

as a function of the polar angle 0 measured from the direction of the applied

d.c. magnetic field. Hence, this surface also constitutes the I refractive

index surface" for the medium; the latter designation is used extensively

in ionospheric propagation theory.
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(See Fig. 4 in Appendix C)

magnetic field direction (z axis) whence a cross-section in the x -z plane

suffices. In Fig. 4, the spatial coordinate axes have been superposed

upon the t - axes, so that the vector directions of the wave normal

and ray are directly those in the x - z plane.

The radiation condition (31) can now be interpreted as cor-

responding to those values of )o and T for which Re S has a component
0, e

in the + z direction. Since p (Re S)> 0, the pertinent segments of the

dispersion curves are those shown shaded in Fig. 4. One notes that it

is possible to have p z o= 'Y < 0 while (Re S) • z > 0, corresponding- -O
to a 'backward" wave in which the directions of energy and phase propagation

along z are opposite. While this simple graphical construction allows the

identification of those portions of the dispersion curve which contribute

propagating waves carrying power in the positive z-direction, it gives no

information as to which curve segments correspond to 'o or e as defined

in (23a, b). The assignment of the proper ordinary and extraordinary

branches defined herein requires a further study of the behavior of the

functions U and W as discussed in connection with (32). These remarks

are developed further in the next section where we analyze in detail the

nature of the dispersion curves, and the associated disposition of e,
f, e

for a plasma medium.
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IV. The function X(a) for a plasma medium

An ionized plasma medium under the influence of a steady external

magnetic field H along the z-axis can be characterized by the following

constitutive parameters: 2,3

2 2 2 2
C+c p c k C = - - ,(35)

W - W+ z )(z Wz) (C . ( )
p c p

1 where w, w and w are the angular applied, plasma, and cyclotron frequencies,
p c

respectively. In this simple description of a plasma, only the electrons are

considered mobile, and collisions with ions and neutral particle$ are neglected;

also, the impressed a. c. field amplitudes are required to be small. In terms

of the electron density N, the electronic charge e, and the electronic mass m,

one may express ap and tc as:

p cH,~~~ P, 2 eN oHo
W e N = 0 (35a)

p mc° c M

To assess the properties of fas a function of a, it is necessary to

investigate the behavior of U and W (see (8b) for g, > 0) for various vlues of

W0, W, w . To facilitate this analysis, the parameters cs 2€11(C1 + 1), c42, 2] Z
C p a 3 , ' 4

have been plotted in Fig. 5 as functions of w. Fig. 5(a) pertains to the case
2

< while w > w c in Fig. 5(b). If a scale for a2 is superimposed along the
p2

positive imaginary axis, the plot may also be used to exhibit the ranges of a

which, at a given frequency w, correspond to propagating (real $) or non-

propagating (complex af) waves (see (32) et seq.). These propagating wave

domains have been shaded in Fig. 5; no propagation obtains outside the shaded

regions. Since the defining expressions for o e change when. tZ<0 i.e.,

when w<w p (see (A13) ), a separate scale for a' along the negative vertical

axis is used in this range. The frequency domain Is subdivided naturally into

the various intervals exhibited in Fig. 5. w and w4 denote, respectively, the

larger and smaller of the frequencies for which a2 = 0, 2 corresponds to
2El = 0, while 2cI/(E1 +I1) = a 2 at~o3.

The behavior of )' for waves satisfying the radiation condition at
0 , e

z -p+oo in the various frequency ranges is summarized in Table I. The first

column lists the branch point singularities which lie on the positive real a-axis

in the ordinary and extraordinary integrals. The notation a + or a- signifies that

a branch point lies at a = a, and that the path of integration is indented around it+

into the upper or lower half of the a-plane, respectively. To each a there cor-
T

responds a (-a) , i. e. , a branch point on the negative real axis, which is not

listed explicitly.
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Typical dispersion curves in the various frequency ranges are shown

in the left half of Fig. 6. These curves represent the real 9? - a solutions

of Eqs. (A9) or (A13) and the portions corresponding to the ordinary and extra-

ordinary waves, as defined in (23a, b), are labeled "o" and "e", respectively. *

(If no curve is shown, the corresponding wave type does not propagate in this

frequency range). The singularities of ".o(a) and Xe() along the real a-axis

are exhibited in the right half of the figure. (The branch points at aY3, 4 in (33)

lie on the real axis only when 6 = EZ/( 1 - 1) = w/woc >1). On the darkened

segments, X is real; elsewhere it is complex. The proper continuation of the

functions Xo, e (a) around the various branch point singularities is effected in

accord with conditions (24) and (31), as summarized in Table I. To render

these functions unique in the multisheeted complex a7-plane, branch cuts have

been drawn. This partitioning removes any ambiguities as to the disposition

of the integration path with respect to singularities of , ; the path is dis-

torted around the branch points in a manner illustrated in Fig. 6 (a) (a trans-

formation of variables in ( 7 a, b) from - T1 to a can be accomplished via (Bi))

The integrands in (7a, b) will generally also contain pole singularities on the real

a - axis which must be investigated separately. Such an investigation has been

carried out in connection with the problem of radiation from an anisotropic half

space (see reference 8). The discussion herein suffices for the complete analysis

of radiation in an infinite anisotropic medium where pole singularities do not

arise. Application of these results to the detailed study of the far field radiated

by a dipole source is to form the subject of a separate publication (see also

reference 8).

The asymptotes of the open branches of the dispersion curves (Figs. 6c, d, f, i)

can be found by looking for real (, n solutions in (A9) and (A15) as a, -+ 0.

Solutions exist only when EI< 0, in which instance X--* + fi1 o as a -# co.

The open branches arise for the ordinary and extraordinary modes when c > 0 andz
/E < 0, respectively.

If the range of propagating modes extends to 0-*+ oo (see Figs. 6c, d-, f, i),

absolute convergence of the integrals can be secured by deforming the end points

of the integration path away from the real a - axis into a region where the integrands

decay exponentially.
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Case Singularities Range of propaga- Sign of 1
ase - (on real axis) ting modes (whe"n' real)

+ - + 2<A+, l ;3. 04 0<1 .01;.

eT 7+ C-1 + C2 <C2e 0~, 0~0, ,<0

1 2 03 04 2<1 0
+ 2B1o .I , , a4 a 1 ,.0

3' 4g
w > > to e , a4 none

1 0 3 +4

-D 1+, a 0  20<1<, 02<<0 <o>0. 0 o<0
0 10

03a 04 none

D ~ ~ ~ 1 0 + a2 <1CT2<2 <0. >Q
04 4 1 4e 0<O

w > w> max(wajwc) e CT + + 02< C2<a2 ;

30 '2 04022 ef

>>1+ 2<1

F oIj2< + <2o

rrin( p, c )> W> w e none 02< 00pc 4

G 0 none none

wp> W> max(w4, w) e J? I+ or 2 < Ioe

H 0 03c 4+ none

4 c 4 none

0 none none

nrin(w4 , wc)> W> 0 e none 2< 00
4s. ,> ..
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Appendix A.
Determination of the vector eigenfunctions

The transverse electromagnetic fields excited by arbitrary electric

or magnetic current distributions in the anisotropic medium are to be repre-

sented as a superposition of transverse vector modal solutions which indivi-

dually satisfy the source-free field equations and the boundary conditions in

the transverse domain. To eliminate the z-dependence from (3a, b), charac-

terized by the translation operator a/az, we assume a separable representa-

tion of the form

Et .(r) =i(x, y) e k k °  >0, (Ala)

-jkX¢i z

H . (r) = Yi 1. (x, y) e (Alb)

where XC. and the normalization parameter Y. are constant, and the subscript i

represents the modal index. Eqs. (3a, b) then define the vector eigenvalue

problem for the transverse mode functions i. and Ri.:

W x I t  , it= -, (AZa)I k k-(--ZO

it , tVtl (. xj

k1 _o - A~b)

Since the transverse (x - y) domain is unbounded, the eigenfunctions have

a plane wave dependence characterized by

-- k -j k ( x+ ily) k - j k (g x+ny),
- e n =) e -j h x+ e (A3)

where the continuous spectrum of the normalized wavenumbers g and 'n runs

,over the values - 0 < (c, i) < Go, and the factor (k/Zw) has been included
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for convenience in normalizatioji. Since the operator V t in (AZa, b) is now
replaceable by -jk ., _= (X ~ x~ o ? ), one obtains the algebraic equations

for the transverse position vectors e and h (for fixed and il),

e= Y R • (hxz), Y4X(h x zo) = S • e , (A4)

where R and S are self-adjoint 2 x 2 dyadics (note: e =t

R. = lt " - -oo=R+ S = C - (z x --) (z x a) = S+ . (A4a)

The superscript + denotes the adjoint operator, Eqs. (A4) can be re-expressed

as the eigenvalue problem

2 +2
P. e = e, P (h xz) = X(h x z °  S..

n -0- -0

(A5)
It follows from the theory of linear operators that the two eigenvectors e and

h x z belonging to the same eigenvalue W satisfy a bi-orthogonality relation as
in (5). The subscripts o and e are employed to distinguish the two possible eigen-
values, and associated eigenvectors, in (AS).

Eqs. (A5) are solved readily in a basis comprising the orthogonal

position vectors a and a x z 0 whereinwe represent

e = a + b(7 x z, h= c c + de x z (A6)

A straight-forward calculation leads to

= aj f2+[ =J 2[] (A7)b b d d

a2) -1 p 2 (l - a2  2 2j ( .(1"213 , C = +,v , (A7a)

from which one obtains the normalized eigenvectors in (4a, b).
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The eigenvalues 2 are the two solutions of the dispersion equationo, e

• L(Ta ) det (P - 2) = 0 (A8)

or

4 + .2{ a(2 1 + 1), Z 1 + El (74 (C Z_ 2 + l)a2 +C2 C2 0 M
[+- 2+ 1 ) +cr-" = 0, (A9)

which yields

S iu -w (AlO)
e

with U, W, and A defined in (8b) and (4e), respectively. Evidently,

2 22 = t*2 when U2> W (A real), (Alla)
e e

and

'2 = *2 when U2 < W (A imaginary). (Allb)

0

(A) is the *Booker quartic' for the longitudinal wave numberv ( 2 is
identical with Booker's q, save for the normalization to k instead of ko; i. e.,

q = V C) (see reference 3, Eq. (13.13), with = 6 = 0).

The subscripts o and e distinguish the two solutions corresponding

to the + and - signs in (AlO), respectively. The respective definitions 1 extra-

ordinary* and 'ordinary" are commonly applied in plasma theory to those real

solutions of the dispersion equation which correspond to waves whose propagation

in a direction transverse to the z-axis is, or is not, affected by the presence of

the d. c. magnetic field (along z). * Transverse propagation corresponds to
= 0; for the ordinary mode one then has a = 1, while for the extraordinary

mode, a 1. It has been customary to label as 'ordinary' and 'extraordinary'

those (real) branches of the X vs. a (dispersion) curves which do, or do not, pass

through the points '= 0, a + 1. For our purposes, however, it is more

significant to effect a definition on the basis of the analytic properties of the

multivalued functions X ( CY) and e (0$ as defined in (8a). The resulting appor-

tionment, between V and 3e , of the real branches of the dispersion curves

will then not necessarily coincide with that mentioned above (see Sec. IV).

We have nevertheless retained the terminology 'ordinary' and sextraordinary'

for the o-and e-solutions, respectively, because the real solutions of~o do

generally include the points )o = 0 , L7 - 1.

When the magnetic field is absent, £ = 0 and cl = 1.
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From (A4) and the orthogonality relations (5), one deduces for

he characteristic admittance Y:
*e ~

1 e o, e - -o,e -o,e (AlZ)
o, e = ho,e V1 o,e -o,ex z o" R. -o,e x Zo

Substitution of (4d) into the last expression in (A12) yields formula (8a).

If one of the regions is isotropic, cl = land E = 0 so that Et = it
-7 -,2-t-

In this instance, f = 1 - 0 2 , and it is convenient to choose the

conventional linearly polarized E mode (single primes) and H mode (double

primes) eigenfunctions

a xz

e= h'xz = e"= h"x z -0 (A13)--- 0 o o - - -o CT

It can then be shown that the resulting transverse field representation is

still given by (7a, b) provided that we replace all subscripts o by single primes
*

and all subscripts e by double primes. The E and H mode voltages VI, V 11

and the currents I', I" satisfy the transmission line equations (8), with the

characteristic impedances defined as

Z,=1 Z1 =_

-Yr = , "C =  (A14)

The equivalent network for the mode coupling produced by a plane interface

between an isotropic and an anisotropic region can then be deduced by proceeding
as in (10) - (11).

If E <0, i.e., k = -jIlk l, the normalization of the transverse and

longitudinal wave numbers 6, n, and ; is taken with respect to I k1. Hence,

k in (Ala) and (A3) should be replaced by IkI, whence in (A2a) is defined as

Mo/Ic i° . The resulting eigenvalue problem is then found to be the same as

in (AS) provided that one replaces a by (+j a) and S by (-S). The dispersion

relation is now given by

4 1) + 2 4 Z- 2 2 2 2
IA +It +1) + 2l1  + C1 T + (E1 - 2 + E1) a+ - 2 0 (A15)

i.e., (A9) applies provided that 92 and a2 are replaced by (-') and (-a );..

respectively. Finally, the eigenvectors are given as in Eqs. (4), if k and a

*The validity of the formal expressipns obtained via this replacement does

not necessarily imply that the E and H modes correspond to the limiting

values of the o - and e - modes, respectively, as t "k1t
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are replaced by I kI and (+j (7), respectively (note: cy--4+jcy). In summary,

formulas (7) - (9) appropriate to r < 0 can be obtained from those for E > 0

by letting 'vc-4-j 1471 I, , X j.z
z z ~ a Cj(
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Appendix B.

Cylindrical wave representation of the fields

Instead of the plane wave representation ini (7a, b), it is frequently

more convenient to employ a cylindrical wave representation based on the

well-known transformation

CO d l OD o e Jk(6 x + Tj y) + jk (6 x1 + T1y )

00 -00

w E ejn(4") ff(C) Jn (krp)J n(Irpt) do, k> o, (Bl)
11- - 00 0

where

a= + x = pcos 4, y = p sin+, xt  ptcos , y. = p' sin

(BZ)

Each of the constituent integrals in (7a, b) resulting upon substitution of (4c, d)
can be reduced to the form I upon observing that the vector a can be replaced

by the vector operator (j/k) V t , and that the differentiation and integration
operations can then be commuted. The scalar constituents of e and h

-o, e -0, e
remaining in the integrands are functions of a only. The voltage and current
V and I are solutions of the differential equations.(8). Since the para-o, e o, e
meters 2 , Y, Z, i, v in this equation depend on (6, vi) only through a, as do

the coupling matrices (11) and (15) descriptive of interface or terminal effects,
Vo, e and Io, e can be expressed as functions of a only, and a cylindrical wave
representation is effected as in (B1). The explicit appearance of the factor

exp [jk(6x' + -qy') ] in the integrand of (B1) results from consideration of a
point current element located at r t = (x',y, z')- 4(p, +t z1) (cf.(9a, b)). The

expression for a distributed source is obtained by integration over the source

point coordinate r t .

If f(o) = f(-c), i. e., f is an even function of up the Cy integral can be

converted to run over the entire real o- axis:

00 00
2 f af () Jn (kap) Jn(kap') dc = f a .of (a) J(cp<) ln)(ap>) do. (p3)

0 ace n

p> and p< denote the greater and lesser of the variables p and pl, respectively.

The second representation in (B3), involving an infinite integration conteuT, is

particularly convenient for an asymptotic evaluation of the integral.
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Appendix C

Figure Captions

Fig. 1 Physical structure and associated network problem

Fig. 2 - Equivalent network for interface between two gyrotropic media

Fig. 3 - Definition of traveling and standing wave quantities

Fig. 4 - Dispersion curve, wave normal, and ray

Fig. 5 - Frequency dependence of various plasma parameters

Fig. 6 - Dispersion curves and singularities on Re a -axis

The dispersion curves on the left show the behavior of 2( vs. a

for propagating waves in various frequency ranges; the designations

lol and I el distinguish the ordinary and extraordinary branches,

respectively. Singularities due to Wo, e (c) on the real 1'- axis are

shown on the right. The dark segments denote propagating wave

regions.
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